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Extended self-similarity in the numerical simulation of three-dimensional homogeneous flows
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We report the statistical analysis of several velocity configurations obtained by performing numerical simu-
lations of three-dimensional homogeneous incompressible turbulence. This analysis provides full support to the
idea, recently proposed by Benzi et al. [Phys. Rev. E 48, 29 (1993)], that fluid flows exhibit extended self-
similarity, a sort of generalized scale invariance, which holds at high as well as at low-to-moderate Reynolds

numbers.
PACS number(s): 47.27.—1i, 05.45.+b

The main parameter controlling the physics of turbulent
flows is the Reynolds number defined as
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where u is the characteristic flow speed, L is the character-
istic macroscale of the flow, and v is the fluid kinematic
viscosity.

In the limit of infinite Reynolds number (vanishing vis-
cosity), the Navier-Stokes equations are invariant under the
following group of scaling transformations for the space x,
time ¢, and velocity v variables:

I A (2)

x—\x, v—\u,

where h is an arbitrary exponent labeling the invariance
group.

Scaling lies at the heart of Kolmogorov’s 1941 theory
(K41) [1], which is based on the following assumptions.

(i) In the limit of Reynolds number tending to infinity the
energy dissipation rate € remains finite.

(ii) The energy flux from large scales, where turbulence is
produced, to small scales, where it is dissipated, is scale
independent.

(iii) In the limit of infinite Reynolds numbers, scale in-
variance is restored at least in a statistical sense.

It is readily checked that the K41 assumptions remove any
arbitrariness in the choice of the exponent 4, which is forced

to the value h=1.
By dimensional arguments, the energy flux at scale r can
be written as

e,~(ov’)/r, 3)

where 6v,=v,(x+r)—uv,(x) is the longitudinal velocity dif-
ference component at the scale separation r oriented accord-
ing to the x direction and the brackets denote ensemble av-
eraging. Owing to the second K41 assumption, one derives

(bv,)~r'?, ie., h=1. In general, one can define the scaling
exponents {, of the structure functions S,(r) by the follow-
ing relation:

Sp(ry=(dvy)~rtr )
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and, for the K41 theory, one has

®)

The aforelisted equations should apply only to the range of
scales where self-similarity is not broken either by boundary
conditions (large scales) or by molecular dissipation. This
defines the so-called inertial regime

n<r<L, (6)
where L is the integral scale of motion and 7= v¥*e~ " is
the dissipative length, i.e., the typical scale at which dissipa-
tion takes over nonlinear transfer in controlling the dynamics
of the system.

There is a wide body of experimental evidence that Kol-
mogorov scaling is violated in the inertial range of high-
Reynolds-numbers flows [2—4]. The scaling exponents ¢,
become significantly smaller in respect to the ones predicted
by the K41 linear law {,=p/3 as the parameter p is in-
creased. This is interpreted as the statistics of small scales
(the one dictating the behavior of higher-order momenta) be-
coming increasingly non-Gaussian, a phenomenon usually
referred to as to “‘intermittency.”

From a practical point of view, the inertial region is de-
fined by the range of scales where the third-order structure
function follows the K41 law

S3=—§er. @)

The larger the Reynolds number, the broader the inertial re-
gion. Unfortunately, for the low-to-moderate Reynolds num-
bers accessible to direct numerical resolution, this range is
often very narrow.

Very recently, an alternative way of testing scaling prop-
erties in flow turbulence has been proposed. The basic idea is
to represent the quantity S, no longer explicitly related to the
space separation, but rather as a function of the third-order
structure function S3 [4]. The rationale behind this idea is
that the behavior of S, is dictated solely by the third-order
structure function S; via a set of scaling exponents «, ac-
cording to the following relation:

S,~5837. (®)
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FIG. 1. The plot of log,o[S3/(er)] versus log,yr. The continu-
ous line is the log;o(3) value predicted by the K41 formula (7) in
correspondence of scales within the inertial range.

This relation represents a generalization of the concept of
scale invariance as expressed by formula (4) [whence the
definition of extended self-similarity (ESS)] as it becomes
apparent once S is identified with a generalized space coor-
dinate. This generalized coordinate reduces to the usual spa-
tial separation r only in the limit of fully developed turbu-
lence (with r within the inertial range). In this limit, the
notion of ESS reduces to the ordinary picture of self-
similarity underlying the concept of scale invariance. The
crucial point about ESS is that the relation (8) applies to fully
developed turbulence as well as to low-to-moderate turbu-
lence where Eq. (4) is not applicable. Moreover, relation (8)
holds for a much wider range of scales than (4), almost down
to the dissipative scale 7. Experimental data seem to indicate
that the ESS scaling exponents a,, are practically the same as
those observed in fully developed turbulence. In other words,
not only does ESS reveal a much more extended ““general-
ized” scaling region, but it also indicates an unexpected (and
welcome) feature of turbulence: intermittency corrections to
K41 scaling are already visible at low Reynolds number, and
are in a quantitative match those observed at high Reynolds
numbers.

This would suggest that concepts such as scaling and in-
termittency do not exclusively belong to fully developed tur-
bulence but preserve their meaning also in the case of mod-
erately low turbulence, provided the right gauge S, instead
of r is used to define them.

ESS might have far-reaching consequences for the under-
standing and modeling of fluid turbulence; in particular, it
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FIG. 2. The plot of the eighth-order structure function log;oSg
versus log;or.
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FIG. 3. The plot of the eighth-order structure function log;Sx
versus log;,S3. The plot reports the line with slope 2.23 which
represents the least-square linear fit of log;,Sy in the range
S7-32n.

may bring part of the physics of fully developed flows within
reach of the present-day capabilities of computer simulation.

Under these conditions, the task of accumulating experi-
mental and numerical data to corroborate or disclaim the
ESS assumption appears of primary importance.

In this paper, we bring further evidence of ESS, by show-
ing that it applies also to the case of three-dimensional simu-
lation of low-Reynolds-number homogeneous incompress-
ible turbulence. To this purpose, we have performed a
pseudospectral numerical simulation [5], running in-core on
an IBM RS/6000 model 560 workstation computer. The
simulation is performed in a box of size 27 discretized by
128* grid points which corresponds to a grid spacing
Ax=0.05. The viscosity and the time step are »=0.01 and
At=0.005, respectively. The initial condition is randomly
generated according to the Gaussian distribution and the
k3" energy spectrum; the total initial energy is scaled to be
E(0)=0.5 and, consequently, the rms velocity is v,
=[2/3E(0)]"*=0.6. This corresponds to Re, = v,m\/V
= 38 with A = (15vv s/ €)?=0.7~ 14Ax.

The turbulence is forced by imposing that modes in the
shell k<1 do not evolve in time [6]. This kind of forcing
allows us to perform a long time simulation preserving the
dynamical equilibrium between the energy enforced at large
scales and the one dissipated at smaller ones. This has been
confirmed by plotting the mean dissipation rate € in time and
observing that, after an initial transient stage, € undergoes
very small fluctuations around the mean value €=0.2 so that
the corresponding Kolmogorov scale is forced to be 7=Ax
for the entire time lapse of simulation.

The simulation has advanced 20000 steps which corre-
spond to about 10 macroscale eddy turnover times estimated
as 7~ 21/vm=10. To enrich the statistics, 40 velocity con-
figurations have been saved each 500 time steps in corre-
spondence to a time interval equal to 7y/4, then sufficiently
large to ensure the statistical independence among different
velocity configurations. The final statistical ensemble to be
processed is composed of about 10® data which allows us to
estimate with adequate accuracy the statistics of momenta at
least for p=<10 [2,3,6] as the criteria adopted in Ref. [6] for
even-order momenta suggest. For the following discussion,
we have compared our numerical estimate of S 3=(6ul)
which directly comes from the definition (4), with the mean
of absolute values (S =(|du,|?)) which are more conve-
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FIG. 4. The local slope dlogySs/dlog 83> and
dlogoSs /dlogmsgl3 versus r/ 7 which evidence the range of scales
where ESS provides the 2.23 linear slope for the log;(Sg structure
function.

nient in order to reduce possible fluctuations induced by the
reduced set of data over which to estimate the statistical mo-
menta. We have conducted a qualitative analysis, similar to
that adopted in Ref. [7], by plotting log;,S; versus log;;S5
verifying that in the present case the relationship
log0S3=log;oS; is well respected for the whole range of
dynamical scales resolved in our simulation. As a conse-
quence, we decided to use S:’{, instead of the more correct
S5, for our analysis and, in the following, we suppress the
symbol * in the definition.

As a first issue, we verify the extension of the inertial
range reproduced by our simulation reporting in Fig. 1 the
plot of log;o[S3/(er)] as a function of log;or. From this
figure, a narrow plateau is visible, ranging from r=25 to
r=235 grid units, with a plateau height in excellent agreement
with theoretical prediction log;,(3) provided by formula (7).

Next, we consider higher-order structure functions up to
p=10. In particular, we focus our attention on the eighth-
order structure function Sg. This quantity is log-log plotted
as a function of r in Fig. 2. Again, a (questionable) scaling
region is visible only in a very narrow range of values of r.

Let us now consider the same data using ESS. To this
purpose, we plot log;oSg versus log;(S;. This information is
displayed in Fig. 3, from which a strikingly wide scaling
region, spanning most of the computational resolution, is
clearly visible. The scaling exponent is 2.23, in very close
agreement with experimental data.

The close match with experimental data is further
demonstrated in Fig. 4, where the local slopes
dlog,Sg /d10g103§‘23 and dlog;(Ss /dlogwsg/3 are reported as
a function of /7. From this figure, we deduce robust evi-
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TABLE 1. The {, exponent structure functions experimentally
and numerically estimated as compared to the ESS measured a,
exponents.

p a, & [2] ¢p [4] ¢ 91
2 0.69 0.71 0.71 0.69
4 1.29 1.33 1.28 1.28
6 1.80 1.80 1.78 1.76
8 2.23 2.22 222 2.14
10 2.58 2.59 2.60 2.48

dence that (i) ESS does apply to moderate-Reynolds-number
three-dimensional homogeneous incompressible turbulence,
(ii) the scaling exponents measured with ESS are in quanti-
tative agreement with experimental data accounting for inter-
mittency, and (iii) the scaling region extends to scales as
small as ~5 7.

These conclusions are corroborated by further analysis at
various values of the parameter p. A list of the measured
scaling exponents is given in Table I. This confirms previous
findings according to which the scaling exponents associated
with ESS are practically the same as those computed for
fully developed homogeneous turbulent flows.

From the practical point of view, we feel that the most
important outcome of ESS is the extension of the lowest end
of the scaling region down to about ~5 dissipative lengths,
i.e., a factor ~\/57~3—4 smaller than the same quantity
under ““conventional” analysis. This substantiates our previ-
ous assertion according to which ESS brings the physics of
turbulence scaling within reach of present-day computers.

This paper has evidenced that ESS is applicable for ho-
mogeneous flows in the range of low-to-moderate Reynolds
numbers. Finally, we want to comment about a possible dis-
crepancy one might observe between the results discussed so
far and those reported in Ref. [8] where ESS was verified
only for r=257 for moments of order 8 and higher. In Ref.
[8] the experimental results refer to measurements taken
close to a boundary layer, i.e., in a nonhomogeneous flow. As
discussed in detail in Ref. [7], going from a homogeneous to
a nonhomogoneous flow, the range where ESS is verified
reduces and the scaling exponents decrease. The effects of
nonhomogeneity and large scale shear flows on the scaling
exponents and ESS scaling range are presently under inves-
tigation.
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